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Abstract

Purpose – The study of pressure-volume-temperature (PVT) process is necessary to understand the
physical behaviour of materials. This paper seeks to develop a simulation procedure to predict phase
behaviour.

Design/methodology/approach – The procedure consisted of the application of a
thermo-mechanical nonlinear model that simulated the behavior of the test sample in the PVT
apparatus. Software Ansys was used for modeling this case, making a subroutine in APDL language.
The real time data of the experimental procedure in PVT apparatus were applied in the computer
simulation, that is the real time of application of pressure and heating scaling of the sample were taken
into account. A specific case was simulated and its results compared with those obtained from the real
experimental test. In order to evaluate phase changes, enthalpy was considered using an approximated
expression described in the paper.

Findings – Results obtained from the simulation were compared with the resulting isobaric graphics
of the experimental test. Results show a good correlation, obtaining in addition stress-strain behavior
of the sample. This simulation procedure allows one in a simple way to vary the properties and
characteristics of the sample. This makes the computer simulation a useful tool together with the
experimental test, in the development of novel materials.

Research limitations/implications – Results of the numerical simulation are based on the
properties and characteristics of the sample. In this study, real data of the material were used; however,
some others had to be assumed based on references on this topic.

Practical implications – The coupled field analysis and the subroutine built in an Ansys
environment are of a general purpose applicable to many kinds of material without practical
limitations but getting a priori the required data and properties needed for running the simulation test.

Originality/value – Computer simulation of PVT process is not a common procedure – the
experimental study of the material is mainly the procedure used to define the stated equations of a
material and for knowing their phase changes. Computer simulation is a procedure that provides other
important features of the material that the experimental study cannot produce simultaneously.
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Introduction
Pressure-volume-temperature (PVT) studies are necessary to understand the physical
behaviour of materials. In fact, they represent a significant part of the thermo-analytic
techniques being currently used. Moreover, PVT is the only technique that involves
pressure as a variable. In fact, many materials are sensitive to pressure, volume
change, dependence of pressure in temperature evolution, as well as to kinetics of
phase transition, are significant aspects, not only from a scientific viewpoint, but also
in practical applications related to materials engineering. Results from a standard PVT
test are directly applicable to equilibrium states studies, including formulation of the
state equation and its theoretical modelling.

Data recorded from a PVT experiment are referred to specific volumes of a material
as a function of pressure and temperature. PVT registers are presented as operating
isotherms or isobars. Materials phase change evaluation is of great interest (Dantzing,
1989). Phase changes are characterized by the enthalpy, given as:

EnthðTÞ ¼

Z T2

T1

rcðTÞdT ð1Þ

where: r – material density; c(T) – specific heat; T1, T2 – integration temperature
limits.

Simulation of a PVT process
Simulation of this process was done as a coupled thermo-mechanical analysis of a
nonlinear type, because there were constitutive parameters given as functions of time,
being enthalpy one of them. Thermo-mechanical model are shown below (Cook et al.,
1988; Incropera and DeWitt, 1981; Kays and Crawford, 1993; Ansys, 2004):

. Thermal model

½C�{ _T} þ ½K�{T} ¼ {FðtÞ} ð2Þ

where: T – temperature; [C ] – specific heat matrix; [K ] – conductance matrix; {F(t)} –
equivalent force vector of temperature.

. Mechanical model

½S�{u} 2 {Fth} ¼ ½Me�{€u} þ {Fe} ð3Þ

being: {u} – displacement vector: [S] – stiffness matrix: {Fth} – equivalent force vector
of temperature: [Me ] – consistent mass matrix; {Fe} – pressure vector on the element.

To couple these fields, we use the Ansys method named sequentially coupled physics
analysis. This is an indirect method that can couple the two fields (thermal and
mechanical) by applying results from the first analysis (thermal) as loads for the second
analysis (mechanical). The loads transfer occurs external to the analysis, the nodal
temperatures file are applied as “body force” loads in the subsequent stress analysis.

Case study. experimental test
A PVT study was performed on a polyethylene terephthalate sample by mean of a
commercial apparatus GNOMIX (Gnomix, 1990) of the constrained fluid type at the
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Advanced Polymer Laboratory and Optimized Materials (LAPOM) of the University of
North Texas, USA (Figure 1). Sample initial data are:

. sample weight WM ¼ 0.06 gr;

. material specific weight PE ¼ 1.3804 gr/cm3;

. initial temperature (environment temperature) ¼ 188C; and

. final temperature ¼ 1468C.

Sample was constrained in Hg (Mercury) under a quasi-hydrostatic pressure varying
from 0 a 200 MPa. Temperature was increased up to 1468C. Temperature rate increase
was 48C/min. Pressure application time for each isotherm was 10 min, while the
unloading lasted 5 min. Obtained experimental results are shown in Figure 2.

Computer simulation
Sample initial data under which the computer modelling was done are the same from
the experimental test, except that others needed parameters were supposed according
some references (Colucci et al., 1997; Courtney, 1990; Gere and Timoshenko, 1986).
Thermal conductivity and specific heat of the material are shown in Figures 3 and 4.

In this study, enthalpy as given in equation (1), was computed numerically. The
approximate solution is given by (see Appendix):

Enthiþ1 ¼ Enthi þ
DT

2

� �
W

Vd

� �
1

1 þ 3aDT

� �
CðTiÞ þ CðTiþ1Þ
� �

ð4Þ

where:Vd – volume of the deformed sample (step i );W – sample weight; a – coefficient
of material volumetric expansion; DT – temperature step; C(T) – specific heat
(shown in Figure 4).

Actually, the elasticity modulus E and Poison ratio m, required for structural
analysis, both change with temperature. However, for our analysis, m was considered
constant while E varying according to data shown in Figure 5.

Block scheme of the simulation procedure is shown in Figure 6. The aforementioned
analysis was applied to a cubic sample of a given initial volume. However, this has no

Figure 1.
Gnomix PVT Apparatus

Source: LAPOM, University of North Texas
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effect on the final results. Indeed, pressure and temperature effects have more influence
at points inside the body, being their effect of the hydrostatic type. On the other hand,
since the sample was immersed on Hg, boundary conditions were assumed on
displacements, in such a way of avoiding body instability. Thus, symmetry planes were
applied corresponding to the boundary conditions. It was also assumed that temperature
transmitted by the Hg, which in turn is transmitted by the thermal device generates
neither distortions, nor produce significant changes on the thermal forces application.

Figure 3.
Thermal conductivity:
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Thermal Conductivity : BTU/(Seg Cm °C)
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Experimental PVT results
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Results and discussion
Computer simulations results are shown in graphical fashion. Figure 7 corresponds to
a body boundary at 268C, and after 2.25 min hydrostatic pressure is applied (a central
cut of the cube, corresponding to the body temperature distribution is shown here).
Hydrostatic type pressure distribution is also shown in Figure 8.

Pressure on the sample was monotonically increased up to 200 MPa. During this
loading process, temperature tends to be distributed symmetrically inside the sample.
The body temperature at 7.75 min is shown in Figure 9, whereas the corresponding one
at 12.25 min is shown in Figure 10. At this time, pressure was released and unloading
started. During the unloading process, inside temperature continued to be distributed
symmetrically. Thus, when the pressure unloading ended at 17.25 min, one had the final
temperature distribution as shown in Figure 11. To this point, one stage of the PVT
simulation process ended. Then, temperature was increased to 448C and the cycle
repeated. For the case in study, the maximum temperature reached was 1468C. Volume
variations were recorded at different time for constructing the final plot of isobars.

A sample deformed configuration for a pressure of 200 MPa and 278C is shown
in Figure 12. The computer simulation of the PVT process allows a visualization

Figure 4.
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Figure 5.
Elasticity modulus of the
sample as a temperature
function
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Figure 6.
Block scheme of the

thermo structural analysis
of a PVT process
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of stresses and deformations at any instant. For this pressure (200 MPa), are
shown for example in Figure 13 the Von-Mises stresses. After repeating the
loading process and temperatures, the final plot of isobars was obtained and is
shown in Figure 14.

Figure 7.
Temperature distribution
inside the sample at
2.25 min
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Figure 8.
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Conclusions
The above-mentioned modelling process allows the simulation of a PVT process of a
sample. Moreover, it also allows obtaining material phase changes if needed. The
approach followed can be described as a nonlinear, dynamic thermo-structural coupled
analysis.

Figure 9.
Temperature distribution
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Figure 10.
Temperature inside the

sample at 12.25 min
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Thermal analysis is of the nonlinear type because involves constitutive parameters
given as functions of time. One of them, enthalpy, allows to determine any possible
change of phase. Thermal problem has the feature of being a time evolution
problem. For this, cycle analysis was performed for a time step previously defined.

Figure 11.
Temperature inside the
sample at 17.25 min
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Figure 12.
Deformed sample for
a pressure 200 MPa

ANSYS 8.1
JUN 14 2005
19:55:11
PLOT NO.    25
DISPLACEMENT
STEP=21
SUB =1
TIME=21
PowerGraphics
EFACET=1
AVRES=Mat
DMX =0.017444

DSCA=1.008
XV     =1
YV     =1
ZV     =1
DIST =0.297556
XF     =0.1758
YF     =0.1758
ZF     =0.1758
Z–BUFFER

1

HFF
18,1

32



Figure 13.
Von-Mises Stress on the

sample for a pressure
200 MPa
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The structural problem, in turn, associates also nonlinear constitutive parameters such
as elasticity modulus, specific heat, and thermal conductivity.

The integral analysis of the sample was done through the coupling of two fields. For
this, the thermal analysis was run first, and then its output entered to the structural
analysis. One of the relevant aspects of this type of analysis is the rich information of
the material, since one can observe its time behaviour either as temperature, inside
stresses, deformations, and so forth. Clearly, these are aspects hardly being available if
one makes it experimentally. The disadvantage of the present analysis, of course, is
that, for its construction required constitutive parameters for material characterization
and the body behaviour are thus dependent on them.

For the case study presented, it can be observed the great closeness of results
obtained from both, namely, computer simulation and experimentally. Thus, one can
highlight the utmost importance of this type of studies, which enrich information on
basic aspects of a material. Furthermore, starting from the PVT isobars plots and
using statistical procedures of multiple regression (Montgomery et al., 2002) one can
construct the material state equation, such as Hartman’s equations (Hartmann and
Haque, 1985).

To appreciate the obtained agreement between analytical and experimental results,
we draw Figure 15. Here, we show only three representatives isobars, namely at 10, 100
and 200 MPa hydrostatic pressure. Difference between each pair is minimal.

Figure 15.
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Appendix
Enthalpy is given by equation (1), here reproduced:

EnthðTÞ ¼

Z T2

T1

rCðTÞdT

where r ¼ W=V def . Also, Vdef ¼ V1 þ V1 u. Here, W is the sample weight, and Vdef is the
deformed sample volume at Temperature T2 measured with respect to sample volume at T1.
Parameter u according (Gere and Timoshenko, 1986) refers the sum of deformations:

u ¼ 1x þ 1y þ 1z

External temperature on a thermal homogeneous material generates equal temperature
deformation 1i in all three principal directions, so we write u ¼ 3 1i. Also temperature deformation,
1i ¼ a DT. Introducing in equation (1) before mentioned relationships, we arrive to the following
expression:

Enth ¼

Z T2

T1

W

V def

� �
CðTÞ

1 þ 3aDT

� �
dT

Inside this expression, DT ¼ T2 – T1 is the temperature step. C(T) is the specific Heat of the
material, and a is the coefficient of volumetric expansion of the material. According to the
proposed procedure (Figure 5) Vdef is obtained each step temperature, then knowing this
parameter, and using trapezium’s rule integration we arrive to proposed approximate equation (4):

Enthiþ1 ¼ Enthi þ
DT

2

� �
W

Vd

� �
1

1 þ 3aDT

� �
ðCðTiÞ þ CðTiþ1ÞÞ
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